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Corrections to scaling for diffusion in disordered media 
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Abstract. We study the diffusion of a particle in a &dimensional lattice where disorder 
arises from a random distribution of waiting times associated with each site of the lattice. 
Using scaling arguments we derive, in  addition to the leading asymptotic behaviour, the 
correction-to-scaling terms for the mean square displacement. We also perform detailed 
Monte Carlo simulations for one, two and three dimensions which give results in substantial 
agreement with the scaling argument predictions. 

1. Introduction 

Disordered materials have recently become a challenging field, both from the point of 
view of the practical applications [l-61, as well as the understanding of the physical 
phenomena involved [7-111. Transport phenomena in general, and diffusion in par- 
ticular, can present anomalous properties in these systems, even in some cases where 
we have a regular lattice. The disorder in the system, whether in amorphous materials, 
o r  in regular lattices with trappings or other kinds of site disorder, produces in many 
cases a slowing down of the diffusion. The first manifestation of this phenomenon is 
the vanishing of the diffusion coefficient [ 9 ,  121, as usually defined from Fick's law. 
A more detailed analysis [7] shows that the mean square displacement as a function 
of the elapsed time behaves as a power law, with an exponent smaller than one, rather 
than having the characteristic linear behaviour o f the  normal random walk. The slowing 
down of the diffusive process may be due to some bottleneck, or  particle trapping, 
which appears in the disordered material. 

In  the present work we shall concentrate on the problem of the diffusion of a 
particle in a regular lattice, with the proviso that the particle remains trapped in each 
site for a certain amount of time before i t  can hop to a nearest neighbour. This has 
become known in the literature as the site disorder case. In  our case, we have taken 
the hopping probability to be uniform in all directions, and the same for all sites. The 
waiting times, instead, depend on each site, but are fixed for each quench. The 
probability distribution for transition rates (taken as the inverse waiting times) is taken 
as a power law distribution [7,9]. 

For the one-dimensional case, Alexander er a1 [7] found anomalous diffusion using 
this power law distribution and  calculated the anomalous exponent for the dominant 
term in the time dependence of the square displacement. This result was generalised 
to many dimensions using scaling arguments [ 9 ] ,  and a renormalisation group approach 
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[8]. Similar results were obtained for the case of hierarchical distributions of disordered 
barriers on a one-dimensional regular lattice [ l l ] .  However, in none of these works 
have the corrections to scaling been studied. 

In this work we analyse, using both scaling arguments and numerical simulations, 
the long-time behaviour of a random walk with site disorder, performed in one, two 
and three dimensions, using a powei law distribution for the transition rates. Initially 
we extend the scaling arguments used previously to calculate the leading asymptotic 
behaviour of the mean square displacement, to calculate the dominant correction terms 
to the scaling behaviour. In  the asymptotic regime we obtain the same exponents as 
those predicted by the scaling laws [9,10]. For the correction to scaling, we have 
found two terms which compete depending on the value of the exponent for the power 
law distribution for the transition rates. Monte Carlo simulations confirm the leading 
asymptotic behaviour giving results for the exponent of the leading term in very good 
agreement with the scaling argument predictions. Using the form of the correction 
terms predicted by scaling arguments together with the results of the numerical 
simulations, we are able to provide a fitting to the mean square displacement, valid 
for a larger time interval, and obtain a value for the amplitude of the leading term in 
good agreement with the exact results in one dimension [ 121. 

In § 2 we introduce the model and use scaling arguments to obtain the results for 
the power law behaviour and its corrections. In  § 3 we present the results from the 
numerical simulation, and give a brief discussion of the main results of the work. 

2. Corrections to scaling 

Let us consider a random walk in a d-dimensional lattice with site disorder. Associated 
with each site in the lattice, there is a waiting time before the next hop takes place to 
a neighbouring site. We have considered the particular case of a hypercubic lattices, 
but the results are independent of the type of lattice. The inverse of the waiting time, 
the transition rate, is given by a quenched random variable W .  The walker hops to any 
of the nearest neighbours with equal probability, and the system is assumed to be 
isotropic. Following the pioneering work of Alexander er a1 [7], we assume a power 
law distribution for the release rate: 

P (  W )  dw = (1 - a )  w - ~  dw O < a < l  O S W S 1 .  (1) 

This can be interpreted [9] as a temperature-dependent rate process, with the 
exponent being related to the critical temperature as CY = 1 - T /  T,. For negative values 
of a, the distribution (1) is no longer singular and hence we obtain normal diffusion, 
while positive values give rise to anomalous diffusion. 

In order to find the asymptotic behaviour of the mean-square displacement and its 
leading correction, we extend the scaling arguments used by Havlin et a1 [9,10]. We 
first realise that, irrespective of the distribution of waiting times, the mean square 
displacement as a function of the number of steps in a d-dimensional walk, is given by 

R 2 = ( r 2 ( r ) } =  N. (2)  

The elapsed time r after N steps is 

r = ( t ) N  (3)  
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where ( t )  is the average time for each step. For the distribution given by ( l ) ,  we obtain 

Here w,,, is a cut-off corresponding to the smallest transition rate encountered by 
the particle when the number of distinct visited sites is Nd. In order to estimate w,,, 
in terms of Nd we proceed in the following way. We choose a random variable 
x (0 s x s 1) distributed uniformly so that P (  w)  dw = dx, i.e. x = W I - ~ ,  From statistical 
analysis, the minimum of x is given by 

1 constant 

where, in addition to the leading term, we have also included a correction. Hence 
wmin behaves as 

We now need to relate the number of steps with the number of distinct sites visited 
by the same walk. The first investigation of this question was made by Dvoretzky and  
Erdos [I31 who showed that the number of distinct sites visited Nd on an  N-step 
lattice walk is given for large N by 

Nd - d = l  ( 7 0 )  

N d - N / l n N  d = 2  ( 7 6 )  

Nd- N d 3 3 .  ( 7 c )  

Let us for the moment restrict ourselves to the one-dimensional case. By using ( 2 ) ,  
(3), (4), ( 6 )  and ( 7 a ) ,  we obtain the following relation between the mean square 
displacement and  the elapsed time: 

+constant x R""-"' +constant x R 2 .  (8)  t -  R ( Z - U ) / ( I - U ,  

The solution of the above equation gives 

( 9 )  

Similarly for two dimensions (apart from a logarithmic correction) and  three 

(10) 

The constants A, B and C are the amplitudes for the leading and  correction-to- 
scaling terms. In (9) and  ( lo) ,  the first correction term dominates for values of a <; 
and the second term is dominant for cy > 4 .  For values of a near f both terms give 
relevant contributions for the correction to scaling. One  should emphasise that, except 
for the extreme values of a, the numerical determination of the correction-to-scaling 
exponent is difficult due  to the competing nature of the terms for a >4 and a <f. 

Although the results presented in this section are particularly valid for the distribu- 
tion given in  ( l ) ,  the above approach can be used to obtain the correction-to-scaling 

[ I +  B t - U / ( ? - O ) +  C[-(l-U)/l- 0 R ? =  , 4 t 2 ( 1 - 0 ) / ( 2 - 0 )  '- '1. 

dimensions we obtain 

[ 1 + Bt-" + Ct-"-"'] .  R'= ~ ( 1 - 0  
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terms for other types of distribution and for diffusion problems which, for example, 
take into account the effects of hard-core interactions [14]. 

3. Numerical results 

In order to compare the results given in (9) and ( l o ) ,  we have performed Monte Carlo 
simulations of the random walk with waiting times in one, two, and three dimensions, 
for several values of a. In order to avoid finite-size effects in the simulations, we have 
taken a lattice of sufficiently large size such that no walk ever reached its boundary. 
The Monte Carlo calculation was averaged over 50 000-100 000 trajectories. On each 
trajectory, we measured the square displacement as a function of time, with up  to 
30000 time steps. This allows us to look at the asymptotic behaviour, and compare 
the anomalous exponents for various values of a plotting ( r ’ )  as a function of t in a 
logarithmic scale. 

The numerical results for the mean square displacement for one, two and three 
dimensions are shown in figures 1 and 2 .  We notice immediately from these figures 
that the slope tends to 1 as a goes to 0. The exponent we compute from the Monte 
Carlo simulation agrees with the leading term in (9) and  (10) in the asymptotic region, 
for all the dimensionalities we calculated. 

Let us now look at the correction terms. The first point to notice is the fact that 
its contribution is minimum for a = l .  This implies that the asymptotic regime is 
attained at  later times, both for larger and smaller values. Numerical simulations 
actually give better results for the exponent of the leading term for values of a near 

8 -  

6 -  

- 2  I 
1 

2 4 6 8 10 12 

h i t i  
Figure 1. Mean square displacement against t ime for a one-dimensional lattice. Averages 
were taken over 50 000-100 000 samples.  The  curves corresponds to values of a between 
0.1 (uppermost  curve) and  0.9 (lowermost curve).  
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Figure 2.  Same as figure 1 for a two-dimensional lattice. 

f and become increasingly less accurate for values of a away from 4. In  order to 
compare the theoretical results for the correction to scaling with the numerical results 
from the Monte Carlo simulation, we have plotted the mean square displacement 
divided by the appropriate power of time against an inverse power of time, as follows 
from (9) and  (10) in figures 3 and 4. I f  only one of the correction terms appeared in 
(9)  and ( lo) ,  the plot should be a straight line. Asymptotically we find this to be true, 
and  we can extract the correct A, B and C coefficients from the numerical results. 
Two comments are in order at this point: in the one-dimensional case the numerical 
fluctuations are larger than in higher dimensions, but the asymptotic behaviour is also 
linear and, secondly, the two-dimensional case shows a larger deviation from the 
scaling behaviour plus corrections, due to the fact that there are additional logarithmic 
terms, as clearly seen in ( 7 ) ,  which have not been included in our calculations in Is 2 .  
The values for the coefficients in (9)  and (10) are a-dependent and can be found by 
a linear best fit using the appropriate scaled variables. In one dimension, for a = 0.9 
(figure 3) we obtain A = 0.98 and  C = 1.05. The value of the leading amplitude A is 
in reasonable agreement with the exact value A = 1.10 found by Nieuwenhuizen and  
Ernst [ 121. 

In summary, we have studied a random walk model in a d-dimensional lattice with 
site disorder using scaling arguments and  Monte Carlo simulations. Using a power 
law distribution for the transition rates (w-") the mean square displacement was 
measured as a function of time for various values of a. In  addition to the leading 
asymptotic behaviour we have found two correction-to-scaling terms. These terms 
compete for values of a around f . The numerical simulations confirm these theoretical 
predictions and  allow us to obtain the amplitudes of the leading and  correction to 
scaling terms for different values of a. 
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0.61 

Figure 3. Plot of ( r Z ( f ) ) / f Z " - " '  
and for a = 0.9. Averages were taken over 100 000 samples. 

against f - '  I - U  1 l l Z - n  1 for a one-dimensional lattice 
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Figure 4. Plot of ( r ' ( f ) ) / f ' ' " "  against f - "  for a two-dimensional (upper curve) and 
three-dimensional (lower curve) lattices and for a = 0.9. Averages were taken over 100 000 
samples. 
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